Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))

Q is empty.

Using Dependency Pairs [1,15] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

COPY(s(x), y, z) → COPY(x, y, cons(f(y), z))
F(cons(f(cons(nil, y)), z)) → COPY(n, y, z)
COPY(s(x), y, z) → F(y)
COPY(0, y, z) → F(z)

The TRS R consists of the following rules:

f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

COPY(s(x), y, z) → COPY(x, y, cons(f(y), z))
F(cons(f(cons(nil, y)), z)) → COPY(n, y, z)
COPY(s(x), y, z) → F(y)
COPY(0, y, z) → F(z)

The TRS R consists of the following rules:

f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [15,17,22] contains 1 SCC with 3 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
QDP
          ↳ QDPSizeChangeProof

Q DP problem:
The TRS P consists of the following rules:

COPY(s(x), y, z) → COPY(x, y, cons(f(y), z))

The TRS R consists of the following rules:

f(cons(nil, y)) → y
f(cons(f(cons(nil, y)), z)) → copy(n, y, z)
copy(0, y, z) → f(z)
copy(s(x), y, z) → copy(x, y, cons(f(y), z))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
By using the subterm criterion [20] together with the size-change analysis [32] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs: